Spread of E. coli O157 infection among Scottish cattle farms: Stochastic models and model selection
نویسندگان
چکیده
Identifying risk factors for the presence of Escherichia coli O157 infection on cattle farms is important for understanding the epidemiology of this zoonotic infection in its main reservoir and for informing the design of interventions to reduce the public health risk. Here, we use data from a large-scale field study carried out in Scotland to fit both "SIS"-type dynamical models and statistical risk factor models. By comparing the fit (assessed using maximum likelihood) of different dynamical models we are able to identify the most parsimonious model (using the AIC statistic) and compare it with the model suggested by risk factor analysis. Both approaches identify 2 key risk factors: the movement of cattle onto the farm and the number of cattle on the farm. There was no evidence for a role of other livestock species or seasonality, or of significant risk of local spread. However, the most parsimonious dynamical model does predict that farms can infect other farms through routes other than cattle movement, and that there is a nonlinear relationship between the force of infection and the number of infected farms. An important prediction from the most parsimonious model is that although only approximately 20% farms may harbour E. coli O157 infection at any given time approximately 80% may harbour infection at some point during the course of a year.
منابع مشابه
Escherichia coli O157 infection on Scottish cattle farms: dynamics and control
In this study, we parametrize a stochastic individual-based model of the transmission dynamics of Escherichia coli O157 infection among Scottish cattle farms and use the model to predict the impacts of both targeted and non-targeted interventions. We first generate distributions of model parameter estimates using Markov chain Monte Carlo methods. Despite considerable uncertainty in parameter va...
متن کاملE. coli O157 on Scottish cattle farms: Evidence of local spread and persistence using repeat cross-sectional data
BACKGROUND Escherichia coli (E. coli) O157 is a virulent zoonotic strain of enterohaemorrhagic E. coli. In Scotland (1998-2008) the annual reported rate of human infection is 4.4 per 100,000 population which is consistently higher than other regions of the UK and abroad. Cattle are the primary reservoir. Thus understanding infection dynamics in cattle is paramount to reducing human infections.A...
متن کاملMetapopulation dynamics of Escherichia coli O157 in cattle: an exploratory model.
Livestock movement is thought to be a risk factor for the transmission of infectious diseases of farm animals. Simple mathematical models were constructed for the transmission of Escherichia coli serogroup O157 between Scottish cattle farms, and the models were used in a preliminary exploration of factors contributing to the levels of infection reported in the field. The results suggest that ca...
متن کاملHigh-level genotypic variation and antibiotic sensitivity among Escherichia coli O157 strains isolated from two Scottish beef cattle farms.
Escherichia coli O157:H7 is a human pathogen that is carried and transmitted by cattle. Scotland is known to have one of the highest rates of E. coli O157 human infections in the world. Two hundred ninety-three isolates were obtained from naturally infected cattle and the environment on two farms in the Scottish Highlands. The isolates were typed by pulsed-field gel electrophoresis (PFGE) with ...
متن کاملHyperimmune lipopolysaccharide antiserum mediated inhibition of the adherence of E. coli O157:H7 to HEP-2 cells and large intestine of mice
Escherichia coli O157:H7 is found in cattle farms and can live in the intestine of healthy cattle. Mostcases of human illnesses including nonbloody diarrhea, hemorrhagic colitis and hemolytic uremic syndromecan be traced, either directly or indirectly, to cattle. One strategy for reducing the risk of EnterohemorrhagicEscherichia coli (EHEC) infections in human is to reduce the prevalence of inf...
متن کامل